Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways.
نویسندگان
چکیده
The results of six high-precision constant energy molecular dynamics (MD) simulations initiated from methane-water systems equilibrated at 80 MPa and 250 K indicate that methane hydrates can nucleate via multiple pathways. Five trajectories nucleate to an amorphous solid. One trajectory nucleates to a structure-I hydrate template with long-range order which spans the simulation box across periodic boundaries despite the presence of several defects. While experimental and simulation data for hydrate nucleation with different time- and length-scales suggest that there may exist multiple pathways for nucleation, including metastable intermediates and the direct formation of the globally-stable phase, this work provides the most compelling evidence that direct formation to the globally stable crystalline phase is one of the multiple pathways available for hydrate nucleation.
منابع مشابه
Nucleation rate analysis of methane hydrate from molecular dynamics simulations.
Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the...
متن کاملDriving Force for Nucleation of Multi-Component Gas Hydrate
Based on driving force for crystallization of one-component gas hydrate, in this report an expression for the supersaturation for crystallization of multicomponent gas hydrate is derived. Expressions for the supersaturation are obtained in isothermal and isobaric regimes. The results obtained are applied to the crystallization of hydrates of mixtures of methane plus ethane and can apply to ...
متن کاملThe cages, dynamics, and structuring of incipient methane clathrate hydrates.
Interest in describing clathrate hydrate formation mechanisms spans multiple fields of science and technical applications. Here, we report findings from multiple molecular dynamics simulations of spontaneous methane clathrate hydrate nucleation and growth from fully demixed and disordered two-phase fluid systems of methane and water. Across a range of thermodynamic conditions and simulation geo...
متن کاملSolubility of aqueous methane under metastable conditions: implications for gas hydrate nucleation.
To understand the prenucleation stage of methane hydrate formation, we measured methane solubility under metastable conditions using molecular dynamics simulations. Three factors that influence solubility are considered: temperature, pressure, and the strength of the modeled van der Waals attraction between methane and water. Moreover, the naturally formed water cages and methane clusters in th...
متن کاملNucleation of Methane Hydrates at Moderate Subcooling by Molecular Dynamics Simulations
Methane hydrates are crystalline structures composed of cages of hydrogenbonded water molecules in which methane molecules are trapped. The nucleation mechanisms of crystallization are not fully resolved, as they cannot be accessed experimentally. For methane hydrates most of the reported simulations on the phenomena capture some of the basic elements of the full structure. In few reports, form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 14 شماره
صفحات -
تاریخ انتشار 2015